Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.


Kavli Institute for Nanoscience Discovery

Brent Ryan

Group Leader, Departmental Research Lecturer

  • Research Scientist

Research Summary

My research focuses on identifying the earliest cellular phenotypes in Parkinson's disease and developing assays to measure these processes. These assays may be used to identify novel mechanisms or form the basis of high-throughput phenotypic and target-based screens to identify drugs to treat Parkinson’s.

In particular, my research interests are how the processes of mitochondrial dysfunction, oxidative stress and autophagy interact and influence cellular dysfunction in PD. To do this, we use a range of techniques and approaches including proteomics, the measurement of cellular bioenergetics and high-content imaging in three principle models:  

  1. iPSC-derived dopaminergic cultures: With our collaborators in the OPDC, we collect skin cells (fibroblasts) from patients with Parkinson’s disease and reprogram these into induced pluripotent stem cells (iPSCs). We are then able to differentiate these cells into dopaminergic cultures, which we can use to understand the dysfunctions which cause these cells to be lost in Parkinson’s disease.   
  2. α-synuclein BAC-transgenic mouse models: Our laboratory has previously generated a number of mouse models focusing on the expression of both wild-type and A30P mutant human α-synuclein in a physiologically regulated spatiotemporal manner. We are investigating how α-synuclein expression levels and mutations in α-synuclein affect mitochondrial function, oxidative stress and aggregation of proteins including α-synuclein.
  3. Toxin models of PD: Both PD-causing toxins MPP+ and rotenone cause mitochondrial dysfunction through complex-I inhibition and production of reactive oxygen and nitrogen species (ROS/RNS). We have investigated how these toxins alter the bioenergetics of these cells and the fundamental biochemical processes in cells. In addition, we investigate how levels of α-synuclein in the cell affect the dysfunctions induced by these neurotoxins.


I completed a PhD at University of Exeter (Peninsula Medical School) in which I studied the effects of oxidative post-translational modifications on the breakdown of immune tolerance in the autoimmune disease systemic lupus erythematosus. I joined the Wade-Martins lab in 2009 and initially worked on the effects of oxidative stress and mitochondrial dysfunction on cellular biochemistry in toxin models of PD and how these are impacted by α-synuclein levels. In 2015 I became an OPDC Career Development Fellow and am focussing on developing high-throughput screens for Parkinson's disease 

iPSC-derived dopaminergic culture

Roles of alpha-synuclein and LRRK2 in mitophagy