Search results
Found 9945 matches for
Use of artificial intelligence to enhance phenotypic drug discovery.
Research and development (R&D) productivity across the pharmaceutical industry has received close scrutiny over the past two decades, especially taking into consideration reports of attrition rates and the colossal cost for drug development. The respective merits of the two main drug discovery approaches, phenotypic and target based, have divided opinion across the research community, because each hold different advantages for identifying novel molecular entities with a successful path to the market. Nevertheless, both have low translatability in the clinic. Artificial intelligence (AI) and adoption of machine learning (ML) tools offer the promise of revolutionising drug development, and overcoming obstacles in the drug discovery pipeline. Here, we assess the potential of target-driven and phenotypic-based approaches and offer a holistic description of the current state of the field, from both a scientific and industry perspective. With the emerging partnerships between AI/ML and pharma still in their relative infancy, we investigate the potential and current limitations with a particular focus on phenotypic drug discovery. Finally, we emphasise the value of public-private partnerships (PPPs) and cross-disciplinary collaborations to foster innovation and facilitate efficient drug discovery programmes.
IP3-mediated Ca2+ release regulates atrial Ca2+ transients and pacemaker function by stimulation of adenylyl cyclases.
Inositol trisphosphate (IP3) is a Ca2+-mobilizing second messenger shown to modulate atrial muscle contraction and is thought to contribute to atrial fibrillation. Cellular pathways underlying IP3 actions in cardiac tissue remain poorly understood, and the work presented here addresses the question whether IP3-mediated Ca2+ release from the sarcoplasmic reticulum is linked to adenylyl cyclase activity including Ca2+-stimulated adenylyl cyclases (AC1 and AC8) that are selectively expressed in atria and sinoatrial node (SAN). Immunocytochemistry in guinea pig atrial myocytes identified colocalization of type 2 IP3 receptors with AC8, while AC1 was located in close vicinity. Intracellular photorelease of IP3 by UV light significantly enhanced the amplitude of the Ca2+ transient (CaT) evoked by electrical stimulation of atrial myocytes (31 ± 6% increase 60 s after photorelease, n = 16). The increase in CaT amplitude was abolished by inhibitors of adenylyl cyclases (MDL-12,330) or protein kinase A (H89), showing that cAMP signaling is required for this effect of photoreleased IP3. In mouse, spontaneously beating right atrial preparations, phenylephrine, an α-adrenoceptor agonist with effects that depend on IP3-mediated Ca2+ release, increased the maximum beating rate by 14.7 ± 0.5%, n = 10. This effect was substantially reduced by 2.5 µmol/L 2-aminoethyl diphenylborinate and abolished by a low dose of MDL-12,330, observations which are again consistent with a functional interaction between IP3 and cAMP signaling involving Ca2+ stimulation of adenylyl cyclases in the SAN pacemaker. Understanding the interaction between IP3 receptor pathways and Ca2+-stimulated adenylyl cyclases provides important insights concerning acute mechanisms for initiation of atrial arrhythmias.NEW & NOTEWORTHY This study provides evidence supporting the proposal that IP3 signaling in cardiac atria and sinoatrial node involves stimulation of Ca2+-activated adenylyl cyclases (AC1 and AC8) by IP3-evoked Ca2+ release from junctional sarcoplasmic reticulum. AC8 and IP3 receptors are shown to be located close together, while AC1 is nearby. Greater understanding of these novel aspects of the IP3 signal transduction mechanism is important for future study in atrial physiology and pathophysiology, particularly atrial fibrillation.
Blockade of sodium‑calcium exchanger via ORM-10962 attenuates cardiac alternans.
Repolarization alternans, a periodic oscillation of long-short action potential duration, is an important source of arrhythmogenic substrate, although the mechanisms driving it are insufficiently understood. Despite its relevance as an arrhythmia precursor, there are no successful therapies able to target it specifically. We hypothesized that blockade of the sodium‑calcium exchanger (NCX) could inhibit alternans. The effects of the selective NCX blocker ORM-10962 were evaluated on action potentials measured with microelectrodes from canine papillary muscle preparations, and calcium transients measured using Fluo4-AM from isolated ventricular myocytes paced to evoke alternans. Computer simulations were used to obtain insight into the drug's mechanisms of action. ORM-10962 attenuated cardiac alternans, both in action potential duration and calcium transient amplitude. Three morphological types of alternans were observed, with differential response to ORM-10962 with regards to APD alternans attenuation. Analysis of APD restitution indicates that calcium oscillations underlie alternans formation. Furthermore, ORM-10962 did not markedly alter APD restitution, but increased post-repolarization refractoriness, which may be mediated by indirectly reduced L-type calcium current. Computer simulations reproduced alternans attenuation via ORM-10962, suggesting that it is acts by reducing sarcoplasmic reticulum release refractoriness. This results from the ORM-10962-induced sodium‑calcium exchanger block accompanied by an indirect reduction in L-type calcium current. Using a computer model of a heart failure cell, we furthermore demonstrate that the anti-alternans effect holds also for this disease, in which the risk of alternans is elevated. Targeting NCX may therefore be a useful anti-arrhythmic strategy to specifically prevent calcium driven alternans.
The Logic of Developing Neocortical Circuits in Health and Disease.
The sensory and cognitive abilities of the mammalian neocortex are underpinned by intricate columnar and laminar circuits formed from an array of diverse neuronal populations. One approach to determining how interactions between these circuit components give rise to complex behavior is to investigate the rules by which cortical circuits are formed and acquire functionality during development. This review summarizes recent research on the development of the neocortex, from genetic determination in neural stem cells through to the dynamic role that specific neuronal populations play in the earliest circuits of neocortex, and how they contribute to emergent function and cognition. While many of these endeavors take advantage of model systems, consideration will also be given to advances in our understanding of activity in nascent human circuits. Such cross-species perspective is imperative when investigating the mechanisms underlying the dysfunction of early neocortical circuits in neurodevelopmental disorders, so that one can identify targets amenable to therapeutic intervention.
A dynamic model of the body gas stores for carbon dioxide, oxygen and inert gases that incorporates circulatory transport delays to and from the lung.
<jats:p> Many models of the body's gas stores have been generated for specific purposes. Here, we seek to produce a more general purpose model that: i) is relevant for both respiratory (CO<jats:sub>2</jats:sub> and O<jats:sub>2</jats:sub>) and inert gases; ii) is based firmly on anatomy and not arbitrary compartments; iii) can be scaled to individuals; and iv) incorporates arterial and venous circulatory delays as well as tissue volumes so that it can reflect rapid transients with greater precision. First, a 'standard man' of 11 compartments was produced, based on data compiled by the International Radiation Protection Commission. Each compartment was supplied via its own parallel circulation, the arterial and venous volumes of which were based on reported tissue blood volumes together with data from a detailed anatomical model for the large arteries and veins. A previously published model was used for the blood gas chemistry of CO<jats:sub>2</jats:sub> and O<jats:sub>2</jats:sub>. It was not permissible ethically to insert pulmonary artery catheters into healthy volunteers for model validation. Therefore, validation was undertaken by comparing model predictions with previously published data and by comparing model predictions with experimental data for transients in gas exchange at the mouth following changes in alveolar gas composition. Overall, model transients were fastest for O<jats:sub>2</jats:sub>, intermediate for CO<jats:sub>2</jats:sub> and slowest for N<jats:sub>2</jats:sub>. There was good agreement between model estimates and experimentally measured data. Potential applications of the model include estimation of closed-loop gain for the ventilatory chemoreflexes, and improving the precision associated with multibreath washout testing and respiratory measurement of cardiac output. </jats:p>
Characterization of a common progenitor pool of the epicardium and myocardium.
The mammalian heart is derived from multiple cell lineages; however, our understanding of when and how the diverse cardiac cell types arise is limited. We mapped the origin of the embryonic mouse heart at single-cell resolution using a combination of transcriptomic, imaging, and genetic lineage labeling approaches. This provided a transcriptional and anatomic definition of cardiac progenitor types. Furthermore, it revealed a cardiac progenitor pool that is anatomically and transcriptionally distinct from currently known cardiac progenitors. Besides contributing to cardiomyocytes, these cells also represent the earliest progenitor of the epicardium, a source of trophic factors and cells during cardiac development and injury. This study provides detailed insights into the formation of early cardiac cell types, with particular relevance to the development of cell-based cardiac regenerative therapies.
Heart Regeneration - Beyond New Muscle And Vessels.
The most striking consequence of a heart attack is the loss of billions of heart muscle cells, alongside damage to the associated vasculature. The lost cardiovascular tissue is replaced by scar formation, which is non-functional and results in pathological remodelling of the heart and ultimately heart failure. It is, therefore, unsurprising that the heart regeneration field has centred efforts to generate new muscle and blood vessels through targeting cardiomyocyte proliferation and angiogenesis following injury. However, combined insights from embryological studies and regenerative models, alongside the adoption of -omics technology, highlight the extensive heterogeneity of cell types within the forming or re-forming heart and the significant crosstalk arising from non-muscle and non-vessel cell types. In this review, we focus on the roles of fibroblasts, immune cells, conduction system and nervous system cell populations during heart development and we consider the latest evidence supporting a function for these diverse lineages in contributing to regeneration following heart injury. We suggest that the emerging picture of neurologically, immunologically and electrically coupled cell function calls for a wider-ranging combinatorial approach to heart regeneration.
Unlocking the Secrets of the Regenerating Fish Heart: Comparing Regenerative Models to Shed Light on Successful Regeneration
<jats:p>The adult human heart cannot repair itself after injury and, instead, forms a permanent fibrotic scar that impairs cardiac function and can lead to incurable heart failure. The zebrafish, amongst other organisms, has been extensively studied for its innate capacity to repair its heart after injury. Understanding the signals that govern successful regeneration in models such as the zebrafish will lead to the development of effective therapies that can stimulate endogenous repair in humans. To date, many studies have investigated cardiac regeneration using a reverse genetics candidate gene approach. However, this approach is limited in its ability to unbiasedly identify novel genes and signalling pathways that are essential to successful regeneration. In contrast, drawing comparisons between different models of regeneration enables unbiased screens to be performed, identifying signals that have not previously been linked to regeneration. Here, we will review in detail what has been learnt from the comparative approach, highlighting the techniques used and how these studies have influenced the field. We will also discuss what further comparisons would enhance our knowledge of successful regeneration and scarring. Finally, we focus on the Astyanax mexicanus, an intraspecies comparative fish model that holds great promise for revealing the secrets of the regenerating heart.</jats:p>
Beyond water homeostasis: Diverse functional roles of mammalian aquaporins.
BACKGROUND: Aquaporin (AQP) water channels are best known as passive transporters of water that are vital for water homeostasis. SCOPE OF REVIEW: AQP knockout studies in whole animals and cultured cells, along with naturally occurring human mutations suggest that the transport of neutral solutes through AQPs has important physiological roles. Emerging biophysical evidence suggests that AQPs may also facilitate gas (CO2) and cation transport. AQPs may be involved in cell signalling for volume regulation and controlling the subcellular localization of other proteins by forming macromolecular complexes. This review examines the evidence for these diverse functions of AQPs as well their physiological relevance. MAJOR CONCLUSIONS: As well as being crucial for water homeostasis, AQPs are involved in physiologically important transport of molecules other than water, regulation of surface expression of other membrane proteins, cell adhesion, and signalling in cell volume regulation. GENERAL SIGNIFICANCE: Elucidating the full range of functional roles of AQPs beyond the passive conduction of water will improve our understanding of mammalian physiology in health and disease. The functional variety of AQPs makes them an exciting drug target and could provide routes to a range of novel therapies.
Hypothermia increases aquaporin 4 (AQP4) plasma membrane abundance in human primary cortical astrocytes via a calcium/transient receptor potential vanilloid 4 (TRPV4)- and calmodulin-mediated mechanism.
Human aquaporin 4 (AQP4) is the primary water channel protein in brain astrocytes. Hypothermia is known to cause astrocyte swelling in culture, but the precise role of AQP4 in this process is unknown. Primary human cortical astrocytes were cultured under hypothermic (32 °C) or normothermic (37 °C) conditions. AQP4 transcript, total protein and surface-localized protein were quantified using RT-qPCR, sandwich ELISA with whole cell lysates or cell surface biotinylation, followed by ELISA analysis of the surface-localized protein, respectively. Four-hour mild hypothermic treatment increased the surface localization of AQP4 in human astrocytes to 155 ± 4% of normothermic controls, despite no change in total protein expression levels. The hypothermia-mediated increase in AQP4 surface abundance on human astrocytes was blocked using either calmodulin antagonist (trifluoperazine, TFP); TRPV4 antagonist, HC-067047 or calcium chelation using EGTA-AM. The TRPV4 agonist (GSK1016790A) mimicked the effect of hypothermia compared with untreated normothermic astrocytes. Hypothermia led to an increase in surface localization of AQP4 in human astrocytes through a mechanism likely dependent on the TRPV4 calcium channel and calmodulin activation. Understanding the effects of hypothermia on astrocytic AQP4 cell surface expression may help develop new treatments for brain swelling based on an in-depth mechanistic understanding of AQP4 translocation.
The energetic brain - A review from students to students.
The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.
Transcriptome analysis suggests a role for the differential expression of cerebral aquaporins and the MAPK signalling pathway in human temporal lobe epilepsy.
Epilepsies are common disorders of the central nervous system (CNS), affecting up to 2% of the global population. Pharmaco-resistance is a major clinical challenge affecting about 30% of temporal lobe epilepsy (TLE) patients. Water homeostasis has been shown crucial for regulation of neuronal excitability. The control of water movement is achieved through a family of small integral membrane channel proteins called aquaporins (AQPs). Despite the fact that changes in water homeostasis occur in sclerotic hippocampi of people with TLE, the expression of AQPs in the epileptic brain is not fully characterised. This study uses microarray and ELISA methods to analyse the mRNA and protein expression of the human cerebral AQPs in sclerotic hippocampi (TLE-HS) and adjacent neocortex tissue (TLE-NC) of TLE patients. The expression of AQP1 and AQP4 transcripts was significantly increased, while that of the AQP9 transcript was significantly reduced in TLE-HS compared to TLE-NC. AQP4 protein expression was also increased while expression of AQP1 protein remained unchanged, and AQP9 was undetected. Microarray data analysis identified 3333 differentially regulated genes and suggested the involvement of the MAPK signalling pathway in TLE pathogenesis. Proteome array data validated the translational profile for 26 genes and within the MAPK pathway (e.g. p38, JNK) that were identified as differentially expressed from microarray analysis. ELISA data showed that p38 and JNK inhibitors decrease AQP4 protein levels in cultured human primary cortical astrocytes. Elucidating the mechanism of selective regulation of different AQPs and associated regulatory proteins may provide a new therapeutic approach to epilepsy treatment.
Inhibitors of Mammalian Aquaporin Water Channels.
Aquaporins (AQPs) are water channel proteins that are essential to life, being expressed in all kingdoms. In humans, there are 13 AQPs, at least one of which is found in every organ system. The structural biology of the AQP family is well-established and many functions for AQPs have been reported in health and disease. AQP expression is linked to numerous pathologies including tumor metastasis, fluid dysregulation, and traumatic injury. The targeted modulation of AQPs therefore presents an opportunity to develop novel treatments for diverse conditions. Various techniques such as video microscopy, light scattering and fluorescence quenching have been used to test putative AQP inhibitors in both AQP-expressing mammalian cells and heterologous expression systems. The inherent variability within these methods has caused discrepancy and many molecules that are inhibitory in one experimental system (such as tetraethylammonium, acetazolamide, and anti-epileptic drugs) have no activity in others. Some heavy metal ions (that would not be suitable for therapeutic use) and the compound, TGN-020, have been shown to inhibit some AQPs. Clinical trials for neuromyelitis optica treatments using anti-AQP4 IgG are in progress. However, these antibodies have no effect on water transport. More research to standardize high-throughput assays is required to identify AQP modulators for which there is an urgent and unmet clinical need.
Identification and Molecular Mechanisms of the Rapid Tonicity-induced Relocalization of the Aquaporin 4 Channel.
The aquaporin family of integral membrane proteins is composed of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surface expression can be rapidly and reversibly regulated in response to changes of tonicity in primary cortical rat astrocytes and in transfected HEK293 cells. The translocation mechanism involves PKA activation, influx of extracellular calcium, and activation of calmodulin. We identify five putative PKA phosphorylation sites and use site-directed mutagenesis to show that only phosphorylation at one of these sites, serine 276, is necessary for the translocation response. We discuss our findings in the context of the identification of new therapeutic approaches to treating brain edema.
Nicotinic acid receptor agonists impair myocardial contractility by energy starvation.
Nicotinic acid receptor agonists have previously been shown to cause acute reductions in cardiac contractility. We sought to uncover the changes in cardiac metabolism underlying these alterations in function. In nine humans, we recorded cardiac energetics and function before and after a single oral dose of nicotinic acid using cardiac MRI to demonstrate contractile function and Phosphorus-31 (31 P) magnetic resonance spectroscopy to demonstrate myocardial energetics. Nicotinic Acid 400 mg lowered ejection fraction by 4% (64 ± 8% to 60 ± 7%, P = .03), and was accompanied by a fall in phosphocreatine/ATP ratio by 0.4 (2.2 ± 0.4 to 1.8 ± 0.1, P = .04). In four groups of eight Wistar rats, we used pyruvate dehydrogenase (PDH) flux studies to demonstrate changes in carbohydrate metabolism induced by the nicotinic acid receptor agonist, Acipimox, using hyperpolarized Carbon-13 (13 C) magnetic resonance spectroscopy. In rats which had been starved overnight, Acipimox caused a fall in ejection fraction by 7.8% (67.5 ± 8.9 to 60 ± 3.1, P = .03) and a nearly threefold rise in flux through PDH (from 0.182 ± 0.114 to 0.486 ± 0.139, P = .002), though this rise did not match pyruvate dehydrogenase flux observed in rats fed carbohydrate rich chow (0.726 ± 0.201). In fed rats, Acipimox decreased pyruvate dehydrogenase flux (to 0.512 ± 0.13, P = .04). Concentration of plasma insulin fell by two-thirds in fed rats administered Acipimox (from 1695 ± 891 ng/L to 550 ± 222 ng/L, P = .005) in spite of glucose concentrations remaining the same. In conclusion, we demonstrate that nicotinic acid receptor agonists impair cardiac contractility associated with a decline in cardiac energetics and show that the mechanism is likely a combination of reduced fatty acid availability and a failure to upregulate carbohydrate metabolism, essentially starving the heart of fuel.
Probing hepatic metabolism of [2-13C]dihydroxyacetone in vivo with 1H-decoupled hyperpolarized 13C-MR.
OBJECTIVES: To enhance detection of the products of hyperpolarized [2-13C]dihydroxyacetone metabolism for assessment of three metabolic pathways in the liver in vivo. Hyperpolarized [2-13C]DHAc emerged as a promising substrate to follow gluconeogenesis, glycolysis and the glycerol pathways. However, the use of [2-13C]DHAc in vivo has not taken off because (i) the chemical shift range of [2-13C]DHAc and its metabolic products span over 144 ppm, and (ii) 1H decoupling is required to increase spectral resolution and sensitivity. While these issues are trivial for high-field vertical-bore NMR spectrometers, horizontal-bore small-animal MR scanners are seldom equipped for such experiments. METHODS: Real-time hepatic metabolism of three fed mice was probed by 1H-decoupled 13C-MR following injection of hyperpolarized [2-13C]DHAc. The spectra of [2-13C]DHAc and its metabolic products were acquired in a 7 T small-animal MR scanner using three purpose-designed spectral-spatial radiofrequency pulses that excited a spatial bandwidth of 8 mm with varying spectral bandwidths and central frequencies (chemical shifts). RESULTS: The metabolic products detected in vivo include glycerol 3-phosphate, glycerol, phosphoenolpyruvate, lactate, alanine, glyceraldehyde 3-phosphate and glucose 6-phosphate. The metabolite-to-substrate ratios were comparable to those reported previously in perfused liver. DISCUSSION: Three metabolic pathways can be probed simultaneously in the mouse liver in vivo, in real time, using hyperpolarized DHAc.
Quantifying the effect of dobutamine stress on myocardial Pi and pH in healthy volunteers: A 31 P MRS study at 7T.
PURPOSE: Phosphorus spectroscopy (31 P-MRS) is a proven method to probe cardiac energetics. Studies typically report the phosphocreatine (PCr) to adenosine triphosphate (ATP) ratio. We focus on another 31 P signal: inorganic phosphate (Pi), whose chemical shift allows computation of myocardial pH, with Pi/PCr providing additional insight into cardiac energetics. Pi is often obscured by signals from blood 2,3-diphosphoglycerate (2,3-DPG). We introduce a method to quantify Pi in 14 min without hindrance from 2,3-DPG. METHODS: Using a 31 P stimulated echo acquisition mode (STEAM) sequence at 7 Tesla that inherently suppresses signal from 2,3-DPG, the Pi peak was cleanly resolved. Resting state UTE-chemical shift imaging (PCr/ATP) and STEAM 31 P-MRS (Pi/PCr, pH) were undertaken in 23 healthy controls; pH and Pi/PCr were subsequently recorded during dobutamine infusion. RESULTS: We achieved a clean Pi signal both at rest and stress with good 2,3-DPG suppression. Repeatability coefficient (8 subjects) for Pi/PCr was 0.036 and 0.12 for pH. We report myocardial Pi/PCr and pH at rest and during catecholamine stress in healthy controls. Pi/PCr was maintained during stress (0.098 ± 0.031 [rest] vs. 0.098 ± 0.031 [stress] P = .95); similarly, pH did not change (7.09 ± 0.07 [rest] vs. 7.08 ± 0.11 [stress] P = .81). Feasibility for patient studies was subsequently successfully demonstrated in a patient with cardiomyopathy. CONCLUSION: We introduced a method that can resolve Pi using 7 Tesla STEAM 31 P-MRS. We demonstrate the stability of Pi/PCr and myocardial pH in volunteers at rest and during catecholamine stress. This protocol is feasible in patients and potentially of use for studying pathological myocardial energetics.