Aulus Cornelius Celsus writes first clinical description of diabetes 30BC-AD50

Indian surgeon Sushruta describes patients with a sweet sticky urine that attracts ants 600s

Paul Langerhans discovers pancreatic islet cells, known as the Islets of Langerhans 1868

Opie discovers the islets of Langerhans produce a secretion, without which diabetes ensues 1888

First diabetic patient, Leonard Thompson, treated with purified bovine insulin 1922

Auguste Loubatieres discovers that sulphonamides stimulate insulin release 1942

Islets of Langerhans are isolated (Keen, Hellerstrom) 1955

Insulin is the first human protein to be chemically synthesised 1963

Rosalin Yalow awarded Nobel Prize for work on measuring insulin in the body 1977

Insulin first recombinant human protein to be commercially licenced 1982

Insulin receptor cloned - the first peptide hormone receptor to be sequenced 1984

Human insulin receptor cloned 1985

K_{ATP} channel shown to be the target for sulphonylurea drugs 1995

Function of K_{ATP} channel subunits elucidated 1997

Sulphonylurea therapy shown to be better than insulin for treating K_{ATP} channel neonatal diabetes 2004

Mutation in K_{ATP} channel shown to cause neonatal diabetes 2006

Aretaus of Cappadocia terms the condition "diabetes" - Greek for siphon

Thomas Willis introduces the term "mellitus" (Latin for sweet or honeyed)

Mering and Minkowski induce diabetes in dogs by pancreatic removal

Banting and Best isolate pancreatic extract and use it to cure diabetes in dogs

First commercial production of insulin by Eli Lilly

Banting and McLeod awarded the Nobel Prize for the discovery of insulin

Insulin is the first protein to be sequenced, earning Fredrick Sanger a Nobel Prize in 1958

First recording of β-cell electrical activity by Dean and Matthews

Discovery that glucose must be metabolised to cause insulin release

Structure of insulin determined by Dorothy Hodgkin

Insulin is the first recombinant protein to be produced in bacteria (Genetech)

Insulin receptor cloned – the first peptide hormone receptor to be sequenced

Glucose shown to close K_{ATP} channels, so stimulating electrical activity and insulin release

Cloning of the K_{ATP} channel

Sulphonylurea therapy shown to be better than insulin for treating K_{ATP} channel neonatal diabetes