Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

This communication reports the first comparative study addressing the effects of both structural architecture and mechanical loading on human mesenchymal stem cells (hMSC) positioned at the interface of a 3D in vitro model composed of a nanofibre/hydrogel laminate composite. hMSC phenotype was affected by both stimuli over a seven-day period. Cells were orientated parallel to the underlying fibre direction irrespective of environment (electrospun 2D fibre sheet or laminate 2D sheet with collagen gel layer). Application of cyclical tensile force (5% strain, 1 Hz, 1 h per day) encouraged hMSCs to remain at the fibre/gel interface, whereas cells cultured in static conditions migrated from the interface to the upper hydrogel layer. Depending on the stimulus applied, hMSCs presented an up-regulation in gene expression, indicative of several cell lineages, with those cultured at the interface and physically stimulated expressing markers indicative of angiogenesis, osteogenesis, and tenogenesis. This study highlights the importance of developing biomaterial scaffolds with environmental cues to specifically drive cells towards the tissue intended for bioengineering.

Original publication




Journal article


Nanomaterials (Basel)

Publication Date





composites, electrospinning, extracellular matrix, human mesenchymal stem cells, hydrogels, mechanical stimulation