Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Control of gene and protein expression is required for cellular homeostasis and is disrupted in disease. Following transcription, mRNA turnover and translation is modulated, most notably by microRNAs (miRNAs). This modulation is controlled by transcriptional and post-transcriptional events that alter the availability of miRNAs for target binding. Recent studies have proposed that some transcripts - termed competitive endogenous RNAs (ceRNAs) - sequester a miRNA and diminish its repressive effects on other transcripts. Such ceRNAs thus mutually alter each other's abundance by competing for binding to a common set of miRNAs. Some question the relevance of ceRNA crosstalk, arguing that an individual transcript, when its abundance lies within a physiological range of gene expression, will fail to compete for miRNA binding due to the high abundance of other miRNA binding sites across the transcriptome. Despite this, some experimental evidence is consistent with the ceRNA hypothesis. In this review, we draw upon existing data to highlight mechanistic and theoretical aspects of ceRNA crosstalk. Our intent is to propose how understanding of ceRNA crosstalk mechanisms can be improved and what evidence is required to demonstrate a ceRNA mechanism. A greater understanding of factors affecting ceRNA crosstalk should shed light on its relevance in physiological states.

Original publication

DOI

10.1080/10409238.2018.1447542

Type

Journal article

Journal

Crit Rev Biochem Mol Biol

Publication Date

06/2018

Volume

53

Pages

231 - 245

Keywords

RNA-induced silencing complex, competitive endogenous RNA, cooperativity, microRNA, post-transcriptional regulation, subcellular localization, Animals, Gene Expression Regulation, Humans, MicroRNAs, Models, Biological, RNA, Messenger, Transcriptome