Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

RATIONALE: Obstructive sleep apnea (OSA) is associated with systemic hypertension. Either overnight intermittent hypoxia, or the recurrent arousals that occur in OSA, could cause the daytime increases in blood pressure (BP). OBJECTIVES: To establish the role of intermittent hypoxia in the increased morning BP in patients with OSA. METHODS: Randomized, double-blinded, crossover trial assessing the effects of overnight supplemental oxygen versus air (sham) on morning BP, after continuous positive airway pressure (CPAP) withdrawal in patients with moderate to severe OSA. The primary outcome was the change in home morning BP after CPAP withdrawal for 14 nights, oxygen versus air. Secondary outcomes included oxygen desaturation index (ODI), apnea-hypopnea index (AHI), subjective sleepiness (Epworth Sleepiness Scale score), and objective sleepiness (Oxford Sleep Resistance Test). MEASUREMENTS AND MAIN RESULTS: Supplemental oxygen virtually abolished the BP rise after CPAP withdrawal and, compared with air, significantly reduced the rise in mean systolic BP (-6.6 mm Hg; 95% confidence interval [CI], -11.3 to -1.9; P = 0.008), mean diastolic BP (-4.6 mm Hg; 95% CI, -7.8 to -1.5; P = 0.006), and median ODI (-23.8/h; interquartile range, -31.0 to -16.3; P < 0.001) after CPAP withdrawal. There was no significant difference, oxygen versus air, in AHI, subjective sleepiness, or objective sleepiness. CONCLUSIONS: Supplemental oxygen virtually abolished the rise in morning BP during CPAP withdrawal. Supplemental oxygen substantially reduced intermittent hypoxia, but had a minimal effect on markers of arousal (including AHI), subjective sleepiness, or objective sleepiness. Therefore intermittent hypoxia, and not recurrent arousals, appears to be the dominant cause of daytime increases in BP in OSA.

Original publication

DOI

10.1164/rccm.201802-0240OC

Type

Journal article

Journal

Am J Respir Crit Care Med

Publication Date

15/01/2019

Volume

199

Pages

211 - 219

Keywords

blood pressure, intermittent hypoxia, obstructive sleep apnea