Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Biological tissue is often composed of cells with similar morphologies replicated throughout large volumes and many biological applications rely on the accurate identification of these cells and their locations from image data. Here we develop a generative model that captures the regularities present in images composed of repeating elements of a few different types. Formally, the model can be described as convolutional sparse block coding. For inference we use a variant of convolutional matching pursuit adapted to block-based representations. We extend the KSVD learning algorithm to subspaces by retaining several principal vectors from the SVD decomposition instead of just one. Good models with little cross-talk between subspaces can be obtained by learning the blocks incrementally. We perform extensive experiments on simulated images and the inference algorithm consistently recovers a large proportion of the cells with a small number of false positives. We fit the convolutional model to noisy GCaMP6 two-photon images of spiking neurons and to Nissl-stained slices of cortical tissue and show that it recovers cell body locations without supervision. The flexibility of the block-based representation is reflected in the variability of the recovered cell shapes.

Type

Conference paper

Publication Date

01/01/2013