Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Gas emissions from Tatun volcanic group, northern Taiwan, were studied for the first time using a multi-component gas analyser system (Multi-GAS) in combination with Giggenbach flask methods at fumaroles and mud pools at Da-you-keng (DYK) and Geng-tze-ping (GZP). CO2/S molar ratios observed at DYK ranged from 3-17, similar ratios were observed using a Multi-GAS sensor box of 8-16. SO2 at GZP was low, higher concentrations were observed at DYK where SO2/H2S ratios were close to 1 for both methods. A lower CO2/H2S ratio was measured via Giggenbach flask sampling (7.2) than was found in the plume using the gas sensor at GZP (9.2). This may reflect rapid oxidation of H2S as it mixes with background air. Gaseous elemental mercury (GEM) levels were observed in the fumarole gases using a portable mercury spectrometer. These are the first such measurements of mercury at Tatun. Mean GEM concentrations in the fumarole plumes were ∼ 20 ng m- 3, with much higher concentrations observed close to the ground (mean [GEM] 130 and 290 ng m- 3 at DYK and GZP, respectively). The GEM in the fumarole plume was elevated above concentrations in industrial/urban air in northern Taiwan and the increase in GEM observed when the instrument was lowered suggests high levels of mercury are present in the surrounding ground surface. The GEM/CO2 (10- 8) and GEM/S (10- 6) ratios observed in the fumarole gases were comparable to those observed at other low-temperature fumaroles. Combining the Hg/CO2 ratio with a previous CO2 flux value for the area, the annual GEM flux from the Tatun field is estimated as 5-50 kg/year. © 2008 Elsevier B.V.

Original publication

DOI

10.1016/j.jvolgeores.2008.06.035

Type

Journal article

Journal

Journal of Volcanology and Geothermal Research

Publication Date

30/12/2008

Volume

178

Pages

636 - 643