Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The gradual accumulation of collagen and associated proteins of the extracellular matrix is a crucial myopathological parameter of many neuromuscular disorders. Progressive tissue damage and fibrosis play a key pathobiochemical role in the dysregulation of contractile functions and often correlates with poor motor outcome in muscular dystrophies. Following a brief introduction into the role of the extracellular matrix in skeletal muscles, we review here the proteomic profiling of myofibrosis and its intrinsic role in X-linked muscular dystrophy. Although Duchenne muscular dystrophy is primarily a disease of the membrane cytoskeleton, one of its most striking histopathological features is a hyperactive connective tissue and tissue scarring. We outline the identification of novel factors involved in the modulation of the extracellular matrix in muscular dystrophy, such as matricellular proteins. The establishment of novel proteomic markers will be helpful in improving the diagnosis, prognosis, and therapy monitoring in relation to fibrotic substitution of contractile tissue. In the future, the prevention of fibrosis will be crucial for providing optimum conditions to apply novel pharmacological treatments, as well as establish cell-based approaches or gene therapeutic interventions. The elimination of secondary abnormalities in the matrisome promises to reduce tissue scarring and the loss of skeletal muscle elasticity.

Original publication




Journal article



Publication Date





345 - 366


Biomedicine, Collagen, Dystrophinopathy, Extracellular matrix, Matricellular, Periostin, Animals, Biomarkers, Extracellular Matrix Proteins, Gene Expression Profiling, Humans, Muscle Proteins, Muscle, Skeletal, Muscular Dystrophies, Proteomics