Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The nature of the coupling between neuronal assemblies in the cerebral cortex and basal ganglia (BG) is poorly understood. We tested the hypothesis that coherent population activity is dependent on brain state, frequency range, and/or BG nucleus using data from simultaneous recordings of electrocorticogram (ECoG) and BG local field potentials (LFPs) in anesthetized rats. The coherence between ECoG and LFPs simultaneously recorded from subthalamic nucleus (STN), globus pallidus (GP), and substantia nigra pars reticulata (SNr) was largely confined to slow- ( approximately 1 Hz) and spindle- (7-12 Hz) frequency oscillations during slow-wave activity (SWA). In contrast, during cortical activation, coherence was mostly restricted to high-frequency oscillations (15-60 Hz). The coherence between ECoG and LFPs also depended on BG recording site. Partial coherence analyses showed that, during SWA, STN and SNr shared the same temporal coupling with cortex, thereby forming a single functional axis. Cortex was also tightly, but independently, correlated with GP in a separate functional axis. During activation, STN, GP, and, to a lesser extent, SNr shared the same coherence with cortex as part of one functional axis. In addition, GP formed a second, independently coherent loop with cortex. These data suggest that coherent oscillatory activity is present at the level of LFPs recorded in cortico-basal ganglia circuits, and that synchronized population activity is dynamically organized according to brain state, frequency, and nucleus. These attributes further suggest that synchronized activity should be considered as one of a number of candidate mechanisms underlying the functional organization of these brain circuits.

Original publication

DOI

10.1152/jn.00333.2004

Type

Journal article

Journal

J Neurophysiol

Publication Date

10/2004

Volume

92

Pages

2122 - 2136

Keywords

Action Potentials, Algorithms, Animals, Basal Ganglia, Cerebral Cortex, Electrocardiography, Electroencephalography, Fourier Analysis, Male, Membrane Potentials, Neural Pathways, Rats, Rats, Sprague-Dawley