Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Gene transfer using immunomodulatory molecules is a promising tool for in vivo regulation of immune responses. Experimental autoimmune uveitis (EAU), which serves as a model for human ocular inflammation, is induced by systemic immunization with autoantigens, but its expression is restricted to the eye. Previously, we reported protection of rodents against EAU by intravenous or/and periocular injection of vIL-10-expressing adenovirus. Here, the expression of vIL-10 was targeted into the rat Lewis eye, by intravitreal injection of either the free virus or ex vivo transfected retinal Müller glial cells (RMG-vIL-10). As shown using GFP-expressing adenovirus, a longer expression of transgene was observed in the eye after transfer of transfected syngeneic RMG cells than was seen after injection of free virus. Intravitreal injection of RMG-vIL-10 led to significant decrease in ocular pathological manifestations, compared to control RMG cells. This was observed when cells were injected simultaneously with autoantigen, but also after a delayed administration of transfected cells. Finally, injection of RMG cells transfected with adenovirus expressing CTLA4 had a strongly protective effect. In conclusion, inhibition of antigen presentation at the site of expression of the autoimmune disorders represents an attractive alternative to treat ocular inflammation, and the transfer of ex vivo genetically modified cells provides a promising method to target the factor of interest into the eye.

Original publication




Journal article


Gene Ther

Publication Date





1970 - 1981


Abatacept, Adenoviridae, Animals, Autoimmune Diseases, Cell Transplantation, Gene Expression, Genetic Therapy, Green Fluorescent Proteins, Immunoconjugates, Immunotherapy, Active, Injections, Interleukin-10, Luminescent Proteins, Male, Models, Animal, Neuroglia, Rats, Rats, Inbred Lew, Retina, Reverse Transcriptase Polymerase Chain Reaction, Transduction, Genetic, Uveitis, Posterior