Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The growth and branching of the ureteric bud is a complex process that is ultimately responsible for the organization of the collecting duct system as well as the number of nephrons in the metanephric kidney. While the genes involved in the regulation of this process have begun to be elucidated, our understanding of the cellular and molecular basis of ureteric bud morphogenesis remains rudimentary. Furthermore, the timing and sequence of branching and elongation that gives rise to the collecting system of the kidney can only be inferred from retrospective staining or microdissection of fixed preparations. To aid in the investigation of these issues, we developed strains of transgenic mice in which a green fluorescent protein (GFP) is expressed in the ureteric bud under the control of the Hoxb7 promoter. In these mice, GFP is expressed in every branch of the ureteric bud throughout renal development, and in its derivative epithelia in the adult kidney. As GFP fluorescence can be easily visualized in living tissue, this allows the dynamic pattern of ureteric bud growth and branching to be followed over several days when the kidneys are cultured in vitro. Using confocal microscopy, branching of the ureteric bud in all three dimensions can be analyzed. These mice represent an extremely powerful tool to characterize the normal patterns of ureteric bud morphogenesis and to investigate the response of the bud to growth factors, matrix elements, and other agents that regulate its growth and branching.

Original publication




Journal article


Dev Genet

Publication Date





241 - 251


Animals, Base Sequence, DNA Primers, Gene Expression Regulation, Developmental, Green Fluorescent Proteins, Homeodomain Proteins, Kidney, Luminescent Proteins, Mice, Mice, Transgenic, Promoter Regions, Genetic, Recombinant Proteins, Ureter