Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Regulation of the body Mg(2+) balance takes place in the distal convoluted tubule (DCT), where transcellular reabsorption determines the final urinary Mg(2+) excretion. The basolateral Mg(2+) extrusion mechanism in the DCT is still unknown, but recent findings suggest that SLC41 proteins contribute to Mg(2+) extrusion. The aim of this study was, therefore, to characterize the functional role of SLC41A3 in Mg(2+) homeostasis using the Slc41a3 knockout (Slc41a3(-/-)) mouse. By quantitative PCR analysis it was shown that Slc41a3 is the only SLC41 isoform with enriched expression in the DCT. Interestingly, serum and urine electrolyte determinations demonstrated that Slc41a3(-/-) mice suffer from hypomagnesemia. The intestinal Mg(2+) absorption capacity was measured using the stable (25)Mg(2+) isotope in mice fed a low Mg(2+) diet. (25)Mg(2+) uptake was similar in wildtype (Slc41a3(+/+)) and Slc41a3(-/-) mice, although Slc41a3(-/-) animals exhibited increased intestinal mRNA expression of Mg(2+) transporters Trpm6 and Slc41a1. Remarkably, some of the Slc41a3(-/-) mice developed severe unilateral hydronephrosis. In conclusion, SLC41A3 was established as a new factor for Mg(2+) handling.

Original publication

DOI

10.1038/srep28565

Type

Journal article

Journal

Sci Rep

Publication Date

28/06/2016

Volume

6