Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Hyperpolarization of (13) C labeled substrates via dynamic nuclear polarization has been used as a method to noninvasively study real-time metabolic processes occurring in vivo. In these studies, proper calibration of radiofrequency transmit power is required to efficiently observe rapidly decaying magnetization. Conventional transmit radiofrequency field (B₁⁺) mapping methods rely on placing magnetization in a fixed, known state prior to imaging, making them unsuitable for imaging of hyperpolarized magnetization. Recently, a phase-based B(1) mapping method based on the Bloch-Siegert shift has been reported. This method uses a B(1) -dependent shift in the resonance frequency of nuclei in the presence of an off-resonance radiofrequency pulse. In this article, we investigate the feasibility of Bloch-Siegert B(1) mapping and observation of metabolism of hyperpolarized [1-¹³C] pyruvate in vivo, in a single injection. The technique is demonstrated with phantom experiments, and in normal rat and pigs in vivo. This method is anticipated to improve quantitative measurements of hyperpolarized (13) C metabolism in vivo by enabling accurate flip-angle corrections. This work demonstrates the use of Bloch-Siegert B(1) mapping under challenging out-of-equilibrium imaging conditions.

Original publication




Journal article


Magn Reson Med

Publication Date





62 - 71


Algorithms, Animals, Bicarbonates, Heart, Image Interpretation, Computer-Assisted, Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy, Myocardium, Pyruvic Acid, Rats, Rats, Nude, Reproducibility of Results, Sensitivity and Specificity, Swine, Systems Integration, Tissue Distribution