Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Oscillations in cytoplasmic Ca(2+) concentration are a universal mode of signaling following physiological levels of stimulation with agonists that engage the phospholipase C pathway. Sustained cytoplasmic Ca(2+) oscillations require replenishment of the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2), the source of the Ca(2+)-releasing second messenger inositol trisphosphate. Here we show that cytoplasmic Ca(2+) oscillations induced by cysteinyl leukotriene type I receptor activation run down when cells are pretreated with Li(+), an inhibitor of inositol monophosphatases that prevents PIP2 resynthesis. In Li(+)-treated cells, cytoplasmic Ca(2+) signals evoked by an agonist were rescued by addition of exogenous inositol or phosphatidylinositol 4-phosphate (PI4P). Knockdown of the phosphatidylinositol 4-phosphate 5 (PIP5) kinases α and γ resulted in rapid loss of the intracellular Ca(2+) oscillations and also prevented rescue by PI4P. Knockdown of talin1, a protein that helps regulate PIP5 kinases, accelerated rundown of cytoplasmic Ca(2+) oscillations, and these could not be rescued by inositol or PI4P. In Li(+)-treated cells, recovery of the cytoplasmic Ca(2+) oscillations in the presence of inositol or PI4P was suppressed when Ca(2+) influx through store-operated Ca(2+) channels was inhibited. After rundown of the Ca(2+) signals following leukotriene receptor activation, stimulation of P2Y receptors evoked prominent inositol trisphosphate-dependent Ca(2+) release. Therefore, leukotriene and P2Y receptors utilize distinct membrane PIP2 pools. Our findings show that store-operated Ca(2+) entry is needed to sustain cytoplasmic Ca(2+) signaling following leukotriene receptor activation both by refilling the Ca(2+) stores and by helping to replenish the PIP2 pool accessible to leukotriene receptors, ostensibly through control of PIP5 kinase activity.

Original publication

DOI

10.1074/jbc.M115.678292

Type

Journal article

Journal

J Biol Chem

Publication Date

04/12/2015

Volume

290

Pages

29555 - 29566

Keywords

calcium channel, calcium intracellular release, calcium release-activated calcium channel protein 1 (ORAI1), phosphatidylinositol kinase (PI kinase), phosphatidylinositol signaling, Animals, Calcium, Calcium Channels, Calcium Signaling, Cell Line, Tumor, Culture Media, Cytoplasm, Leukotriene C4, Leukotrienes, Lithium, ORAI1 Protein, Phosphatidylinositol 4,5-Diphosphate, RNA, Small Interfering, Rats, Receptors, Leukotriene, Signal Transduction, Talin, Type C Phospholipases