Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Tetrahydrobiopterin (BH4) and 4-amino-tetrahydrobiopterin (ABH4) prevent acute rejection after solid organ transplantation. Moreover, BH4 also attenuates ischemiareperfusion injury (IRI). The mechanisms underlying these protective effects are poorly defined. Activation of intracellular signaling proteins, including the mitogen-activated protein kinases (MAPKs) ERK, p38, and JNK, and the excessive production of mitochondrial reactive oxygen species (ROS) are observed mainly during early reperfusion. While the role of ROS in the initiation and progression of IRI is well understood, the contribution of individual signaling pathways is less clear. Here, we tested the potential effects of BH4 and ABH4 on MAPK activity and mitochondrial ROS levels. During hypoxia and reoxygenation (H/R), all three MAPKs were activated during early reoxygenation in cardiomyocytes and endothelial cells. p38 and JNK activation were further augmented by BH4 and ABH4, whereas ERK activation was not affected. Pretreatment with BH4 and ABH4 reduced the basal mitochondrial ROS levels as well as the H/R-induced increase in ROS. Prolonged incubation with ABH4, however, showed pro-apoptotic effects in cardiomyocytes. These data suggest that a protective effect of BH4 and ABH4 pretreatment may be attributed mainly to their antioxidant capacity. The effects on intracellular signaling are complex and warrant further investigations. © 2013 by Walter de Gruyter Berlin Boston.

Original publication

DOI

10.1515/pterid-2013-0027

Type

Journal article

Journal

Pteridines

Publication Date

01/12/2013

Volume

24

Pages

225 - 235