Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

CLC-K chloride channels and their subunit, barttin, are crucial for renal NaCl reabsorption and for inner ear endolymph production. Mutations in CLC-Kb and barttin cause Bartter syndrome. Here, we identified two adjacent residues, F256 and N257, that when mutated hugely alter in Xenopus oocytes CLC-Ka's biphasic response to niflumic acid, a drug belonging to the fenamate class, with F256A being potentiated 37-fold and N257A being potently blocked with a KD~1μM. These residues are localized in the same extracellular I-J loop which harbors a regulatory Ca(2+) binding site. This loop thus can represent an ideal and CLC-K specific target for extracellular ligands able to modulate channel activity. Furthermore, we demonstrated the involvement of the barttin subunit in the NFA potentiation. Indeed the F256A mutation confers onto CLC-K1 a transient potentiation induced by NFA which is found only when CLC-K1/F256A is co-expressed with barttin. Thus, in addition to the role of barttin in targeting and gating, the subunit participates in the pharmacological modulation of CLC-K channels and thus represents a further target for potential drugs.

Original publication

DOI

10.1016/j.bbamem.2014.07.021

Type

Journal article

Journal

Biochim Biophys Acta

Publication Date

11/2014

Volume

1838

Pages

2745 - 2756

Keywords

CLC-K1, CLC-Ka, Chloride channels, Niflumic acid