Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

High levels of sympathetic drive in several cardiovascular diseases including postmyocardial infarction, chronic congestive heart failure and hypertension are reinforced through dysregulation of afferent input and central integration of autonomic balance. However, recent evidence suggests that a significant component of sympathetic hyperactivity may also reside peripherally at the level of the postganglionic neuron. This has been studied in depth using the spontaneously hypertensive rat, an animal model of genetic essential hypertension, where larger neuronal calcium transients, increased release and impaired reuptake of norepinephrine in neurons of the stellate ganglia lead to a significant tachycardia even before hypertension has developed. The release of additional sympathetic cotransmitters during high levels of sympathetic drive can also have deleterious consequences for peripheral cardiac parasympathetic neurotransmission even in the presence of β-adrenergic blockade. Stimulation of the cardiac vagus reduces heart rate, lowers myocardial oxygen demand, improves coronary blood flow, and independently raises ventricular fibrillation threshold. Recent data demonstrates a direct action of the sympathetic cotransmitters neuropeptide Y (NPY) and galanin on the ability of the vagus to release acetylcholine and control heart rate. Moreover, there is as a strong correlation between plasma NPY levels and coronary microvascular function in patients with ST-elevation myocardial infarction being treated with primary percutaneous coronary intervention. Antagonists of the NPY receptors Y1 and Y2 may be therapeutically beneficial both acutely during myocardial infarction and also during chronic heart failure and hypertension. Such medications would be expected to act synergistically with β-blockers and implantable vagus nerve stimulators to improve patient outcome.

Original publication




Journal article


Am J Physiol Regul Integr Comp Physiol

Publication Date





R1411 - R1420


autonomic nervous system, cardiac, hypertension, myocardial infarction, neuropeptide Y, Animals, Cardiovascular Diseases, Disease Models, Animal, Galanin, Heart, Hypertension, Neuropeptide Y, Neuropeptides, Rats, Rats, Inbred SHR, Sympathetic Nervous System