Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The neural processing of sensory stimuli involves a transformation of physical stimulus parameters into perceptual features, and elucidating where and how this transformation occurs is one of the ultimate aims of sensory neurophysiology. Recent studies have shown that the firing of neurons in early sensory cortex can be modulated by multisensory interactions [1-5], motor behavior [1, 3, 6, 7], and reward feedback [1, 8, 9], but it remains unclear whether neural activity is more closely tied to perception, as indicated by behavioral choice, or to the physical properties of the stimulus. We investigated which of these properties are predominantly represented in auditory cortex by recording local field potentials (LFPs) and multiunit spiking activity in ferrets while they discriminated the pitch of artificial vowels. We found that auditory cortical activity is informative both about the fundamental frequency (F0) of a target sound and also about the pitch that the animals appear to perceive given their behavioral responses. Surprisingly, although the stimulus F0 was well represented at the onset of the target sound, neural activity throughout auditory cortex frequently predicted the reported pitch better than the target F0.

Original publication




Journal article


Curr Biol

Publication Date





620 - 625


Acoustic Stimulation, Animals, Auditory Cortex, Auditory Perception, Cues, Female, Ferrets, Pitch Discrimination, Synaptic Potentials