Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

AIM: The conventional clinical formulation of paclitaxel (PTX), Taxol®, consists of Cremophor® EL (CrEL) and ethanol. CrEL-formulated PTX is associated with acute hypersensitivity reactions, anemia and cardiovascular events. In this study, the authors investigated the effects of CrEL-PTX on red blood cells (RBCs) and compared these with the effects observed after exposure to the novel nanoparticle albumin-bound PTX, marketed as Abraxane®. RESULTS: The authors demonstrate that CrEL is primarily responsible for RBC lysis and induction of phosphatidylserine exposure. Phosphatidylserine-exposing RBCs showed increased association with endothelial cells in culture. The authors also identified CrEL as being responsible for vesiculation of RBCs. This is the first time that excipients have been shown to be involved in microvesicle formation. Microvesicles were taken up by endothelial cells. CONCLUSION: These results offer new insights into the side effect profile of Taxol, which is likely to have implications for patients with erythrocyte disorders. Abraxane did not induce any of these effects on RBCs, indicating that the choice of excipients can have a pronounced influence on the efficacy and side effects of drug molecules.

Original publication

DOI

10.2217/nnm.12.163

Type

Journal article

Journal

Nanomedicine (Lond)

Publication Date

07/2013

Volume

8

Pages

1127 - 1135

Keywords

Cells, Cultured, Chemistry, Pharmaceutical, Erythrocytes, Flow Cytometry, Glycerol, Hemolysis, Human Umbilical Vein Endothelial Cells, Humans, Paclitaxel, Phosphatidylserines