Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Hypoxia and acidosis are recognized features of inflammatory arthroses. This study describes the effects of IGF-1 and TGF-β1 on pH regulatory mechanisms in articular cartilage under hypoxic conditions. Acid efflux, reactive oxygen species (ROS), and mitochondrial membrane potential were measured in equine articular chondrocytes isolated in the presence of serum (10% fetal calf serum), IGF-1 (1, 10, 50, 100 ng/ml) or TGF-β1 (0.1, 1, 10 ng/ml) and then exposed to a short-term (3 h) hypoxic insult (1% O2). Serum and 100 ng/ml IGF-1 but not TGF-β1 attenuated hypoxic regulation of pH homeostasis. IGF-1 appeared to act through mitochondrial membrane potential stabilization and maintenance of intracellular ROS levels in very low levels of oxygen. Using protein phosphorylation inhibitors PD98059 (25 μM) and wortmannin (200 nM) and Western blotting, ERK1/2 and PI-3 kinase pathways are important for the effect of IGF-1 downstream to ROS generation in normoxia but only PI-3 kinase is implicated in hypoxia. These results show that oxygen and growth factors interact to regulate pH recovery in articular chondrocytes by modulating intracellular oxygen metabolites. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 197-203, 2013 Copyright © 2012 Orthopaedic Research Society.

Original publication

DOI

10.1002/jor.22221

Type

Journal article

Journal

Journal of Orthopaedic Research

Publication Date

01/02/2013

Volume

31

Pages

197 - 203