Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The effect of differential signalling by IL-6 and leukaemia inhibitory factor (LIF) which signal by gp130 homodimerisation or LIFRβ/gp130 heterodimerisation on survival and hypertrophy was studied in neonatal rat cardiomyocytes. Both LIF and IL-6 [in the absence of soluble IL-6 receptor (sIL-6Rα)] activated Erk1/2, JNK1/2, p38-MAPK and PI3K signalling peaking at 20min and induced cytoprotection against simulated ischemia-reperfusion injury which was blocked by the MEK1/2 inhibitor PD98059 but not the p38-MAPK inhibitor SB203580. In the absence of sIL-6R, IL-6 did not induce STAT1/3 phosphorylation, whereas IL-6/sIL-6R and LIF induced STAT1 and STAT3 phosphorylation. Furthermore, IL-6/sIL-6R induced phosphorylation of STAT1 Tyr(701) and STAT3 Tyr(705) were enhanced by SB203580. IL-6 and pheneylephrine (PE), but not LIF, induced cardiomyocyte iNOS expression and nitric oxide (NO) production. IL-6, LIF and PE induced cardiomyocyte hypertrophy, but with phenotypic differences in ANF and SERCA2 expression and myofilament organisation with IL-6 more resembling PE than LIF. Transfection of cardiomyocytes with full length or truncated chimaeric gp130 cytoplasmic domain/Erythropoietin receptor (EpoR) extracellular domain fusion constructs showed that the membrane proximal Box 1 and Box 2 containing region of gp130 was necessary and sufficient for MAPK and PI3K activation; hypertrophy; SERCA2 expression and iNOS/NO induction in the absence of JAK/STAT activation. In conclusion, IL-6 can signal in cardiomyocytes independent of sIL-6R and STAT1/3 and furthermore, that Erk1/2 and PI3K activation by IL-6 are both necessary and sufficient for induced cardioprotection. In addition, p38-MAPK may act as a negative feedback regulator of JAK/STAT activation in cardiomyocytes.

Original publication

DOI

10.1016/j.cellsig.2012.12.008

Type

Journal article

Journal

Cell Signal

Publication Date

04/2013

Volume

25

Pages

898 - 909

Keywords

Animals, Cell Survival, Cells, Cultured, Cytokine Receptor gp130, Flavonoids, Humans, Hypertrophy, Imidazoles, Interleukin-6, Janus Kinases, Leukemia Inhibitory Factor, Mice, Mitogen-Activated Protein Kinase 1, Mitogen-Activated Protein Kinase 3, Myocytes, Cardiac, Nitric Oxide, Nitric Oxide Synthase Type II, Phosphatidylinositol 3-Kinases, Phosphorylation, Pyridines, Rats, Receptors, Erythropoietin, Recombinant Fusion Proteins, Recombinant Proteins, Reperfusion Injury, STAT1 Transcription Factor, STAT3 Transcription Factor, Signal Transduction, p38 Mitogen-Activated Protein Kinases