Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The abnormally high cation permeability in red blood cells (RBCs) from patients with sickle cell disease (SCD) occupies a central role in pathogenesis. Sickle RBC properties are notably heterogeneous, however, thus limiting conventional flux techniques that necessarily average out the behaviour of millions of cells. Here we use the whole-cell patch configuration to characterise the permeability of single RBCs from patients with SCD in more detail. A non-specific cation conductance was reversibly induced upon deoxygenation and was permeable to both univalent (Na+, K+, Rb+) and also divalent (Ca2+, Mg2+) cations. It was sensitive to the tarantula spider toxin GsMTx-4. Mn2+ caused partial, reversible inhibition. The aromatic aldehyde o-vanillin also irreversibly inhibited the deoxygenation-induced conductance, partially at 1mM and almost completely at 5mM. Nifedipine, amiloride and ethylisopropylamiloride were ineffective. In oxygenated RBCs, the current was pH sensitive showing a marked increase as pH fell from 7.4 to 6, with no change apparent when pH was raised from 7.4 to 8. The effects of acidification and deoxygenation together were not additive. Many features of this deoxygenation-induced conductance (non-specificity for cations, permeability toCa2+ andMg2+, pH sensitivity, reversibility, partial inhibition by DIDS and Mn2+) are shared with the flux pathway sometimes referred to as Psickle. Sensitivity to GsMTx-4 indicates its possible identity as a stretch-activated channel. Sensitivity to o-vanillin implies that activation requires HbS polymerisation but since the conductance was observed in whole-cell patches, results suggest that bulk intracellular Hb is not involved; rather a membrane-bound subfraction is responsible for channel activation. The ability to record P(sickle)-like activity in single RBCs will facilitate further studies and eventual molecular identification of the pathway involved.

Original publication

DOI

10.1113/jphysiol.2012.229609

Type

Journal article

Journal

J Physiol

Publication Date

01/05/2012

Volume

590

Pages

2095 - 2105

Keywords

4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid, Anemia, Sickle Cell, Benzaldehydes, Calcium, Cell Membrane Permeability, Dose-Response Relationship, Drug, Electric Conductivity, Erythrocyte Membrane, Hemoglobin, Sickle, Humans, Hydrogen-Ion Concentration, Ion Transport, Magnesium, Manganese, Membrane Potentials, Membrane Transport Modulators, Oxygen, Patch-Clamp Techniques, Peptides, Potassium, Protein Multimerization, Rubidium, Sodium, Spider Venoms, Time Factors