Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

1. We have studied the effects of hypoxia on membrane potential and [Ca2+]i in enzymically isolated type I cells of the neonatal rat carotid body (the principal respiratory O2 chemosensor). Isolated cells were maintained in short term culture (3-36 h) before use. [Ca2+]i was measured using the Ca(2+)-sensitive fluoroprobe indo-1. Indo-1 was loaded into cells using the esterified form indo-1 AM. Membrane potential was measured (and clamped) in single isolated type I cells using the perforated-patch (amphotericin B) whole-cell recording technique. 2. Graded reductions in PO2 from 160 Torr to 38, 19, 8, 5 and 0 Torr induced a graded rise of [Ca2+]i in both single and clumps of type I cells. 3. The rise of [Ca2+]i in response to anoxia was 98% inhibited by removal of external Ca2+ (+1 mM EGTA), indicating the probable involvement of Ca2+ influx from the external medium in mediating the anoxic [Ca2+]i response. 4. The L-type Ca2+ channel antagonist nicardipine (10 microM) inhibited the anoxic [Ca2+]i response by 67%, and the non-selective Ca2+ channel antagonist Ni2+ (2 mM) inhibited the response by 77%. 5. Under voltage recording conditions, anoxia induced a reversible membrane depolarization (or receptor potential) accompanied, in many cases, by trains of action potentials. These electrical events were coincident with a rapid rise of [Ca2+]i. When cells were voltage clamped close to their resting potential (-40 to -60 mV), the [Ca2+]i response to anoxia was greatly reduced and its onset was much slower.(ABSTRACT TRUNCATED AT 250 WORDS)

Original publication

DOI

10.1113/jphysiol.1994.sp020143

Type

Journal article

Journal

J Physiol

Publication Date

01/05/1994

Volume

476

Pages

423 - 428

Keywords

Animals, Animals, Newborn, Calcium, Calcium Channel Blockers, Carotid Body, Electrophysiology, Hypoxia, Ion Channel Gating, Membrane Potentials, Rats, Rats, Sprague-Dawley, Signal Transduction