Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: The mechanisms underlying the age-related increase in blood pressure and sympathetic nerve activity remain largely unknown. The decline in growth hormone (GH) secretion and insulin-like growth factor-I (IGF-I) with age has been related to several cardiovascular risk factors. Low serum IGF-I levels in severe adult GH deficiency is associated with markedly increased sympathetic nerve activity. This study evaluates whether a relationship between serum IGF-I and sympathetic nerve traffic exists in healthy aging men. DESIGN AND METHODS: Sympathetic nerve activity to the muscle vascular bed (MSA) was recorded in 56 healthy normotensive males, and related to age (range 21-71 years), body mass index (BMI, range 18.4-32.2), serum IGF-I and plasma nitrate levels. Blood pressure, BMI and MSA increased with age, whereas IGF-I and plasma nitrate decreased. In a forward stepwise multiple regression analysis, age explained 40% of the variability in MSA and excluded other variables. Omitting age, IGF-I became the strongest independent predictor, explaining 23% of the variability in MSA. MSA was an independent predictor of diastolic blood pressure, but its influence (10%) was less than that of BMI (28%). BMI was not related to MSA or IGF-I. CONCLUSIONS: Decreased serum IGF-I levels are coupled to increased MSA during ageing, an effect independent from the impact of increased body weight. Although MSA is a weak predictor of rising blood pressure with age, it constitutes one possible pathway for the somatotropic axis to affect cardiovascular function in ageing.


Journal article


J Hypertens

Publication Date





2019 - 2024


Adult, Aged, Aging, Blood Pressure, Blood Vessels, Body Mass Index, Diastole, Humans, Insulin-Like Growth Factor I, Male, Middle Aged, Muscle, Skeletal, Nitrates, Reference Values, Sympathetic Nervous System