Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Sleep is a fundamental biological rhythm involving the interaction of numerous brain structures and diverse neurotransmitter systems. The primary measures used to define sleep are the electroencephalogram (EEG) and electromyogram (EMG). However, EEG-based methods are often unsuitable for use in high-throughput screens as they are time-intensive and involve invasive surgery. As such, the dissection of sleep mechanisms and the discovery of novel drugs that modulate sleep would benefit greatly from further development of rapid behavioral assays to assess sleep in animal models. Here is described an automated noninvasive approach to evaluate sleep duration, latency, and fragmentation using video tracking of mice in their home cage. This approach provides a high correlation with EEG/EMG measures under both baseline conditions and following administration of pharmacological agents. Moreover, the dose-dependent effects of sedatives, stimulants, and light can be readily detected. This approach is robust yet relatively inexpensive to implement and can be easily incorporated into ongoing screening programs to provide a powerful first-pass screen for assessing sleep and allied behaviors.

Original publication




Journal article


J Biol Rhythms

Publication Date





48 - 58


Animals, Automation, Laboratory, Behavior, Animal, Caffeine, Electroencephalography, Electromyography, Light, Male, Mice, Mice, Inbred C57BL, Monitoring, Physiologic, Pyridines, Sleep, Video Recording, Wakefulness