Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The sequencing phase of the human genome project will soon be over. In its wake, repertoires of sequence polymorphisms among the human population are being sampled and a battery of functional genomics projects, from gene and protein expression studies to whole proteome interaction experiments, are generating vast quantities of data. Now that the data, or the means to generate data, are available it is the application of this information in enhancing our understanding of biology that represents the next formidable challenge. Two prominent issues should be considered. First, existing data must be analysed using the best methods available. The prediction of enzymatic activity for bestrophin, whose gene is mutated in Best macular dystrophy, is described in this review. This is an example of the experimentally testable hypotheses that can result from such detailed and exhaustive analyses. Secondly, the torrents of data from high-throughput studies will need to be made more accessible to all using web-based resources that integrate and digest complementary data types. The internet sites that showcase the human genome sequence are blazing a new trail. Ultimately, the success of genome sequencing and functional genomics will be measured not by the quantity and accuracy of raw data generated, but how rapidly they can be harnessed to span the divide between genotype and phenotype.


Journal article


Hum Mol Genet

Publication Date





2209 - 2214


Alleles, Amino Acid Sequence, Bacteria, Chloride Channels, Databases, Factual, Eye Proteins, Genetic Variation, Genome, Human, Humans, Macular Degeneration, Molecular Sequence Data, Plants, Sequence Homology, Amino Acid