Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

It is becoming increasingly evident that the freely diffusible second messenger cAMP can transduce specific responses by localized signalling. The machinery that underpins compartmentalized cAMP signalling is only now becoming appreciated. Adenylate cyclases, the enzymes that synthesize cAMP, are localized at discrete parts of the plasma membrane, and phosphodiesterases, the enzymes that degrade cAMP, can be targeted to selected subcellular compartments. A-kinase-anchoring proteins then serve to anchor PKA (protein kinase A) close to specific targets, resulting in selective activation. The specific activation of such individual subsets of PKA requires that cAMP is made available in discrete compartments. In this presentation, the molecular and structural mechanisms responsible for compartmentalized PKA signalling and restricted diffusion of cAMP will be discussed.

Original publication

DOI

10.1042/BST0340495

Type

Journal article

Journal

Biochem Soc Trans

Publication Date

08/2006

Volume

34

Pages

495 - 497

Keywords

Animals, Cyclic AMP, Cyclic AMP-Dependent Protein Kinases, Diffusion, Second Messenger Systems, Signal Transduction