Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Many evolutionary studies over the past decade have estimated α(sel), the proportion of all nucleotides in the human genome that are subject to purifying selection because of their biological function. Most of these studies have estimated the nucleotide substitution rates from genome sequence alignments across many diverse mammals. Some α(sel) estimates will be affected by the heterogeneity of substitution rates in neutral sequence across the genome. Most will also be inaccurate if change in the functional sequence repertoire occurs rapidly relative to the separation of lineages that are being compared. Evidence gathered from both evolutionary and experimental analyses now indicate that rates of "turnover" of functional, predominantly noncoding, sequence are, indeed, high. They are sufficiently high that an estimated 50% of mouse constrained noncoding sequence is predicted not to be shared with rat, a closely related rodent. The rapidity of turnover results in, at least, a twofold underestimate of α(sel) by analyses that measure constraint across the eutherian phylogeny. Approaches that take account of turnover estimate that the steady-state value of α(sel) lies between 10% and 15%. Experimental studies corroborate the predicted rates of loss and gain of noncoding functional sites. These studies show the limitations inherent in the use of deep sequence conservation for identifying functional sequence. Experimental investigations focusing on lineage-specific, noncoding, and functional sequence are now essential if we are to appreciate the complete functional repertoire of the human genome.

Original publication




Journal article


Genome Res

Publication Date





1769 - 1776


Animals, Conserved Sequence, Evolution, Molecular, Genome, Human, Humans, Models, Genetic, Sequence Homology