Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Intracellular compartmentalization plays a critical role in maintaining cellular homeostasis and regulating metabolic processes. A growing body of evidence suggests that various metabolic enzymes, including CTP synthase (CTPS), can dynamically assemble into membraneless filamentous structures. The formation of these membraneless organelles is precisely regulated by the cellular metabolic state. CTPS, a rate-limiting enzyme in the de novo biosynthesis of CTP, has been shown to assemble into filamentous structures known as cytoophidium. First identified in 2010 by three independent research groups, cytoophidia are evolutionarily conserved across diverse organisms, including bacteria, archaea, yeast, mammals, and plants, suggesting a fundamental biological function. Given the well-established advantages of Drosophila melanogaster as a genetic model, this organism provides a powerful system for investigating the physiological roles of cytoophidia. This review synthesizes current findings on CTPS cytoophidia in Drosophila, with a particular focus on their spatiotemporal distribution in tissues and their regulatory roles in three key biological processes: intestinal homeostasis, lipid metabolism, and reproductive physiology. Furthermore, we discuss the challenges and future directions in cytoophidia research, offering insights into their broader implications in cellular metabolism and physiology.

Original publication

DOI

10.1016/j.yexcr.2025.114536

Type

Journal article

Journal

Experimental Cell Research

Publication Date

15/04/2025

Volume

447