PURPOSE: This study aimed to determine the association between functional impairment in small airways and symptoms of dyspnea in patients with Long-coronavirus disease (COVID), using imaging and computational modeling analysis. PATIENTS AND METHODS: Thirty-four patients with Long-COVID underwent thoracic computed tomography and hyperpolarized Xenon-129 magnetic resonance imaging (HP Xe MRI) scans. Twenty-two answered dyspnea-12 questionnaires. We used a computed tomography-based full-scale airway network (FAN) flow model to simulate pulmonary ventilation. The ventilation distribution projected on a coronal plane and the percentage lobar ventilation modeled in the FAN model were compared with the HP Xe MRI data. To assess the ventilation heterogeneity in small airways, we calculated the fractal dimensions of the impaired ventilation regions in the HP Xe MRI and FAN models. RESULTS: The ventilation distribution projected on a coronal plane showed an excellent resemblance between HP Xe MRI scans and FAN models (structure similarity index: 0.87 ± 0.04). In both the image and the model, the existence of large clustered ventilation defects was not identifiable regardless of dyspnea severity. The percentage lobar ventilation of the HP Xe MRI and FAN model showed a strong correlation (ρ = 0.63, P < 0.001). The difference in the fractal dimension of impaired ventilation zones between the low and high dyspnea-12 score groups was significant (HP Xe MRI: 1.97 [1.89 to 2.04] and 2.08 [2.06 to 2.14], P = 0.005; FAN: 2.60 [2.59 to 2.64] and 2.64 [2.63 to 2.65], P = 0.056). CONCLUSIONS: This study has identified a potential association of small airway functional impairment with breathlessness in Long-COVID, using fractal analysis of HP Xe MRI scans and FAN models.
Journal article
J Thorac Imaging
09/10/2023