Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sol-gel derived bioactive glasses of the 70S30C (70mol% SiO2, 30mol% CaO) composition have been foamed to produce 3D bioactive scaffolds with hierarchical interconnected pore morphologies similar to trabecular bone. The aim of this study was to investigate primary human osteoblast response to porous bioactive glass scaffolds. The scaffolds supported osteoblast growth and induced differentiation, within the 3-week culture period, as depicted by enhanced ALPase enzymatic activity, without the addition of supplementary factors such as ascorbic acid, beta-glycerophosphate and dexamethasone. This is the first time this has been observed on a bioactive glass that does not contain phosphate. Deposition of extracellular matrix was also confirmed by enhanced production of the extracellular matrix protein collagen type I. SEM showed indications of mineralized bone nodule formation without the addition of growth factors. The 70S30C bioactive glass scaffolds therefore fulfil many of the criteria for an ideal scaffold for bone tissue engineering applications.

Original publication

DOI

10.1016/j.biomaterials.2006.11.022

Type

Journal article

Journal

Biomaterials

Publication Date

03/2007

Volume

28

Pages

1653 - 1663

Keywords

Calcification, Physiologic, Cell Culture Techniques, Cells, Cultured, Ceramics, Extracellular Matrix, Humans, Osteoblasts, Osteogenesis, Phosphates, Surface Properties, Tissue Engineering