Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hybrids with a silica network covalently bonded to a polymer are promising materials for bone repair. Previous work on synthesizing methyl methacrylate (MMA) based copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization gives high tailorability of mechanical properties since sophisticated polymer structures can be designed. However, more flexible hybrids would be beneficial. Here, n-butyl methacrylate (BMA) and methyl acrylate (MA) based hybrids are produced. Unlike MMA, BMA and MA hybrids do not show plastic deformation, and BMA hybrid has strain to failure of 33%. Although the new hybrids are more flexible, preosteoblast cells do not adhere on their surfaces, due to higher hydrophobicity and lower stiffness. Comonomer choice is crucial for bone regenerative hybrids.

Original publication

DOI

10.1002/marc.201700168

Type

Journal article

Journal

Macromol Rapid Commun

Publication Date

08/2017

Volume

38

Keywords

RAFT, TMSPMA, bioactive glass, hybrids, sol-gel, Acrylates, Bone Substitutes, Methacrylates, Osteoblasts, Polymerization, Polymers, Silicon Dioxide