Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Iron oxide nanostructures have been widely developed for biomedical applications because of their magnetic properties and biocompatibility. In clinical applications, stabilization of these nanostructures against aggregation and nonspecific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted because of their complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)]. For the commercially important case of spherical particles, binding of poly(MPC) to iron oxide surfaces and highly effective individualization of magnetite nanoparticles (20 nm) are demonstrated. Next-generation high-aspect-ratio nanowires (both magnetite/maghemite and core-shell iron/iron oxide) are, furthermore, stabilized by poly(MPC) coating, with the nanowire cytotoxicity at large concentrations significantly reduced. The synthesis approach exploited to incorporate functionality into the poly(MPC) chain is demonstrated by random copolymerization with an alkyne-containing monomer for click chemistry. Taking these results together, poly(MPC) homopolymers and random copolymers offer a significant improvement over current iron oxide nanoformulations, combining straightforward synthesis, strong surface anchoring, and well-defined molecular weight.

Original publication

DOI

10.1021/acsami.7b12290

Type

Journal article

Journal

ACS Appl Mater Interfaces

Publication Date

22/11/2017

Volume

9

Pages

40059 - 40069

Keywords

biocompatible nanoparticles, iron oxide, maghemite, magnetic nanoparticles, magnetite, poly(MPC), surface functionalization, surface-adsorbed polymers