Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Controversy exists regarding the relative roles of thalamic versus intracortical inputs in shaping the response properties of cortical neurons. In the whisker-barrel system, this controversy centers on the mechanisms determining the receptive fields of layer IV (barrel) neurons. Whereas principal whisker-evoked responses are determined by thalamic inputs, the mechanisms responsible for adjacent whisker (AW) responses are in dispute. Here, we took advantage of the fact that lesions of the spinal trigeminal nucleus interpolaris (SpVi) significantly reduce the receptive field size of neurons in the ventroposterior thalamus. We reasoned that if AW responses are established by these thalamic inputs, brainstem lesions would significantly reduce the receptive field sizes of barrel neurons. We obtained extracellular single unit recordings from barrel neurons in response to whisker deflections from control rats and from rats that sustained SpVi lesions. After SpVi lesions, the receptive field of both excitatory and inhibitory barrel neurons decreased significantly in size, whereas offset/onset response ratios increased. Response magnitude decreased only for inhibitory neurons. All of these findings are consistent with the hypothesis that AW responses are determined primarily by direct thalamic inputs and not by intracortical interactions.

Original publication

DOI

10.1523/JNEUROSCI.1360-05.2005

Type

Journal article

Journal

J Neurosci

Publication Date

22/06/2005

Volume

25

Pages

5926 - 5934

Keywords

Animals, Brain Stem, Female, Functional Laterality, Neurons, Physical Stimulation, Rats, Rats, Sprague-Dawley, Somatosensory Cortex, Thalamus, Vibrissae