Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Muscular dystrophies are a heterogeneous group of genetic disorders characterized by muscle weakness and wasting. Duchenne muscular dystrophy (DMD) is the most common and severe form of muscular dystrophy, and although the molecular mechanisms of the disease have been extensively investigated since the discovery of the gene in 1986, there is currently no effective treatment. However, new gene-based therapies have recently emerged with particular noted advances in using conventional gene replacement strategies, RNA-based technology and pharmacological approaches. While the proof of principle has been demonstrated in animal models, several clinical trials have recently been undertaken to investigate the feasibility of these strategies in patients. In particular, antisense-mediated exon skipping has shown encouraging results and holds promise for the treatment of dystrophic muscle. Here, we summarize the recent progress in therapeutic approaches to muscular dystrophies, with an emphasis on gene therapy and exon skipping for DMD.

Original publication

DOI

10.1093/hmg/ddr105

Type

Journal article

Journal

Hum Mol Genet

Publication Date

15/04/2011

Volume

20

Pages

R69 - R78

Keywords

Dystrophin, Exons, Genetic Therapy, Humans, Muscular Dystrophies