Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Iron is an essential metal for cellular metabolism and signaling, but it has adverse effects in excess. The physiological consequences of iron deficiency are well established, yet the relationship between iron supplementation and pericellular oxygen levels in cultured cells and their downstream effects on metalloproteins has been less explored. This study exploits the metalloprotein geNOps in cultured HEK293T epithelial and EA.hy926 endothelial cells to test the iron-dependency in cells adapted to standard room air (18 kPa O2) or physiological normoxia (5 kPa O2). We show that cells in culture require iron supplementation to activate the metalloprotein geNOps and demonstrate for the first time that cells adapted to physiological normoxia require significantly lower iron compared to cells adapted to hyperoxia. This study establishes an essential role for recapitulating oxygen levels in vivo and uncovers a previously unrecognized requirement for ferrous iron supplementation under standard cell culture conditions to achieve geNOps functionality.

Original publication

DOI

10.1016/j.redox.2022.102319

Type

Journal article

Journal

Redox Biol

Publication Date

07/2022

Volume

53

Keywords

Cell culture, Culture media, Ferric iron, Ferrous iron, Hydrogen peroxide, Hyperoxia, NO bioavailability, Normoxia, Pericellular oxygen, geNOps, Biosensing Techniques, Endothelial Cells, HEK293 Cells, Humans, Iron, Metalloproteins, Nitric Oxide, Oxygen