Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Background: Kinase oxidation is a critical signalling mechanism through which changes in the intracellular redox state alter cardiac function. In the myocardium, type-1 protein kinase A (PKARIα) can be reversibly oxidized, forming interprotein disulfide bonds within the holoenzyme complex. However, the effect of PKARIα disulfide formation on downstream signaling in the heart, particularly under states of oxidative stress such as ischemia and reperfusion (I/R), remains unexplored. Methods: Atrial tissue obtained from patients before and after cardiopulmonary bypass and reperfusion and left ventricular (LV) tissue from mice subjected to I/R or sham surgery were used to assess PKARIα disulfide formation by immunoblot. To determine the impact of disulfide formation on PKARIα catalytic activity and sub-cellular localization, live-cell fluorescence imaging and stimulated emission depletion super-resolution microscopy were performed in prkar1 knock-out mouse embryonic fibroblasts, neonatal myocytes or adult LV myocytes isolated from 'redox dead' (Cys17Ser) PKARIα knock-in mice and their wild-type littermates. Comparison of intracellular calcium dynamics between genotypes was assessed in fura2-loaded LV myocytes whereas I/R-injury was assessed ex vivo. Results: In both humans and mice, myocardial PKARIα disulfide formation was found to be significantly increased (2-fold in humans, p=0.023; 2.4-fold in mice, p<0.001) in response to I/R in vivo. In mouse LV cardiomyocytes, disulfide-containing PKARIα was not found to impact catalytic activity, but instead led to enhanced A-kinase-anchoring protein (AKAP) binding with preferential localization of the holoenzyme to the lysosome. Redox-dependent regulation of lysosomal two pore channels (TPC) by PKARIα was sufficient to prevent global calcium release from the sarcoplasmic reticulum in LV myocytes, without affecting intrinsic ryanodine receptor leak or phosphorylation. Absence of I/R-induced PKARIα disulfide formation in "redox dead" knock-in mouse hearts resulted in larger infarcts (2-fold, p<0.001) and a concomitant reduction in LV contractile recovery (1.6-fold, p<0.001), which was prevented by administering the lysosomal TPC inhibitor Ned-19 at the time of reperfusion. Conclusions: Disulfide-modification targets PKARIα to the lysosome where it acts as a gatekeeper for TPC-mediated triggering of global calcium release. In the post-ischemic heart, this regulatory mechanism is critical for protecting from extensive injury and offers a novel target for the design of cardioprotective therapeutics.

Original publication

DOI

10.1161/CIRCULATIONAHA.120.046761

Type

Journal article

Journal

Circulation

Publication Date

13/11/2020