Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

1. The effects of the metabolic inhibitor sodium azide were tested on excised macropatches from Xenopus oocytes expressing cloned ATP-sensitive potassium (KATP) channels of the Kir6.2/SUR1 type. 2. In inside-out patches from oocytes expressing Kir6.2 delta C36 (a truncated form of Kir6.2 that expresses in the absence of SUR), intracellular Na-azide inhibited macroscopic currents with an IC50 of 11 mM. The inhibitory effect of Na-azide was mimicked by the same concentration of NaCl, but not by sucrose. 3. Na-azide and NaCl blocked Kir6.2/SUR1 currents with IC50 of 36 mM and 19 mM, respectively. Inhibition was abolished in the absence of intracellular Mg2+. In contrast, Kir6.2 delta C36 currents were inhibited by Na-azide both in the presence or absence of intracellular Mg2+. 4. Kir6.2/SUR1 currents were less sensitive to 3 mM Na-azide in the presence of MgATP. This apparent reduction in sensitivity is caused by a small activatory effect of Na-azide conferred by SUR. 5. We conclude that, in addition to its well-established inhibitory effect on cellular metabolism, which leads to activation of KATP channels in intact cells, intracellular Na-azide has direct effects on the KATP channel. Inhibition is intrinsic to Kir6.2, is mediated by Na+, and is modulated by SUR. There is also a small, ATP-dependent, stimulatory effect of Na-azide mediated by the SUR subunit. The direct effects of 3 mM Na-azide on KATP channels are negligible in comparison to the metabolic activation produced by the same Na-azide concentration.

Original publication




Journal article


Br J Pharmacol

Publication Date





1105 - 1112


Adenosine Triphosphate, Animals, Enzyme Inhibitors, Female, Glycosyltransferases, Membrane Proteins, Mice, Potassium Channels, Rats, Receptors, Immunologic, Receptors, KIR, Repressor Proteins, Saccharomyces cerevisiae Proteins, Sodium Azide, Sodium Chloride, Xenopus laevis