Effects of different levels of end-tidal PO2 on ventilation during isocapnia in humans.
Bascom DA., Pandit JJ., Clement ID., Robbins PA.
The purpose of this investigation was to examine how the ventilatory decline observed during sustained, eucapnic hypoxia (HVD) is affected by different levels of hypoxia. Six subjects were each studied 3-6 times at each of 5 different levels of isocapnic hypoxia (end-tidal PO2 equal to 45, 50, 55, 65 and 75 Torr) in random order. The following variables were linearly related to saturation: (1) the rapid increase in ventilation at the onset of hypoxia; (2) the decline in ventilation over the period of hypoxia; and (3) the undershoot in ventilation below the pre-hypoxic control values at the relief of hypoxia. The rapid decrease in ventilation at the relief of hypoxia, however, was not linearly related to saturation. The mean time to peak ventilation was 2.13 +/- 0.07 min (+/- SE) at the onset of hypoxia, which was significantly longer (P less than 0.05) than the time to minimum ventilation at the relief of hypoxia of 1.23 +/- 0.18 min. The recovery from the undershoot in ventilation was 95% +/- 3% complete after 5 min, whereas the recovery in sensitivity to hypoxia was only 35% +/- 13% complete after 5 min of euoxia.