Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The multitubulin hypothesis holds that each tubulin isotype serves a unique role with respect to microtubule function. Here we investigate the role of the α-tubulin subunit Tuba1a in adult hippocampal neurogenesis and the formation of the dentate gyrus. Employing birth date labelling and immunohistological markers, we show that mice harbouring an S140G mutation in Tuba1a present with normal neurogenic potential, but that this neurogenesis is often ectopic. Morphological analysis of the dentate gyrus in adulthood revealed a disorganised subgranular zone and a dispersed granule cell layer. We have shown that these anatomical abnormalities are due to defective migration of prospero-homeobox-1-positive neurons and T-box-brain-2-positive progenitors during development. Such migratory defects may also be responsible for the cytoarchitectural defects observed in the dentate gyrus of patients with mutations in TUBA1A.

Original publication

DOI

10.1159/000319663

Type

Journal article

Journal

Dev Neurosci

Publication Date

2010

Volume

32

Pages

268 - 277

Keywords

Animals, Dentate Gyrus, Hippocampus, Male, Mice, Mice, Transgenic, Neural Stem Cells, Neurogenesis, Tubulin