Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

α-Synuclein (α-Syn) accumulation is a pathological hallmark of Parkinson's disease. Duplications and triplications of SNCA, the gene coding for α-Syn, cause genetic forms of the disease, which suggests that increased α-Syn dosage can drive PD. To identify the proteins that regulate α-Syn we previously performed a screen of potentially druggable genes that led to the identification of 60 modifiers. Among them, Doublecortin like kinase 1 (DCLK1), a microtubule binding serine threonine kinase, emerged as a promising target due to its potent effect on α-Syn and potential druggability as a neuron-expressed kinase. In this study, we explore the relationship between DCLK1 and α-Syn in human cellular and mouse models of PD. First, we show that DCLK1 regulates α-Syn levels post-transcriptionally. Second, we demonstrate that knockdown of Dclk1 reduces phosphorylated species of α-Syn and α-Syn-induced neurotoxicity in the substantia nigra in two distinct mouse models of synucleinopathy. Lastly, silencing DCLK1 in human neurons derived from individuals with SNCA triplications reduces phosphorylated and total α-Syn, thereby highlighting DCLK1 as a potential therapeutic target to reduce pathological α-Syn in disease.SIGNIFICANCE STATEMENTDCLK1 regulates α-Syn protein levels and Dclk1 knockdown rescues α-Syn toxicity in mice. This study provides evidence for a novel function for DCLK1 in the mature brain, and for its potential as a new therapeutic target for synucleinopathies.

Original publication

DOI

10.1523/JNEUROSCI.1076-19.2019

Type

Journal article

Journal

J Neurosci

Publication Date

20/11/2019