Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Ischemia-reperfusion injury plays a major role in graft dysfunction following transplantation. Extensive research has demonstrated that nitric oxide (NO) plays a fundamental role to protect the heart against this injury. Consequently, we quantified NO synthase (NOS) isoform protein levels in a rat heart transplant model during short and prolonged reperfusion following ischemia. Experiments were performed using a modified Lewis to Lewis heterotopic abdominal heart transplantation with a total ischemic time of 3 hours followed by 1 or 24 hours of blood reperfusion (n = 12). Heart function, as represented by the rate pressure product, increased from 7912 +/- 489 to 27067 +/- 9982 mm Hg/min (mean +/- SEM, short vs prolonged reperfusion, P = .0027). NOS isoform protein levels determined using Western blotting of freeze-clamped hearts were compared to baseline values. eNOS protein levels were significantly lower during short reperfusion compared to the basal value (P = .0077) or to prolonged reperfusion (P = .004), returning to the basal value after 24 hours of reflow. iNOS protein was not detected in the basal condition or after 1 hour of reflow, but was present after 24 hours of reflow (P = .0001 vs basal value and 1-hour reflow). nNOS protein was 69% lower after 1 hour of reflow compared with the baseline value (P = .0001), it was not restored after 24 hours of reflow (P = .002). These results suggest involvement of the NO pathway in ischemia-reperfusion injury with distinctive roles of NOS isoforms during short and prolonged reperfusion following ischemia.

Original publication




Journal article


Transplant Proc

Publication Date





1280 - 1282


Animals, Heart Transplantation, Nerve Tissue Proteins, Nitric Oxide, Nitric Oxide Synthase, Nitric Oxide Synthase Type I, Nitric Oxide Synthase Type II, Nitric Oxide Synthase Type III, Rats, Rats, Inbred Lew, Reperfusion, Time Factors, Transplantation, Heterotopic, Transplantation, Isogeneic