Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Intermediate filaments (IFs), along with microfilaments and microtubules, comprise the three intracellular filaments identified in eukaryotic cells to date. Together, these three distinct filamentous networks act in a dynamic and tightly interconnected fashion to comprise the eukaryotic cytoskeleton. As such, they are involved in a number of essential and diverse cellular processes, including division, molecular transport, and the maintenance of structural integrity in the face of mechanical stress. Underscoring the ubiquitous importance of IF proteins to the normal function of cellular systems, mutations in IF-encoding genes that affect the structure, function, or regulation of these proteins are commonly found in association with a range of heritable genetic diseases. The diversity of IF-related disease is indeed as wide as the distribution of IF proteins themselves, effecting the development of a broad range of disease phenotypes. Here we review, with specific reference to recent developments in the correlation of genotype with phenotype, how the perturbation of IF networks can elicit the development of human neurological disease.

Original publication

DOI

10.1615/critrevneurobiol.v19.i1.10

Type

Journal article

Journal

Crit Rev Neurobiol

Publication Date

2007

Volume

19

Pages

1 - 27

Keywords

Animals, Humans, Intermediate Filament Proteins, Nervous System Diseases