Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Steep action potential duration (APD) restitution has been shown to facilitate wavebreak and ventricular fibrillation. The global APD restitution properties in cardiac patients are unknown. We report a combined clinical electrophysiology and computer modelling study to: (1) determine global APD restitution properties in cardiac patients; and (2) examine the interaction of the observed APD restitution with known arrhythmia mechanisms. In 14 patients aged 52-85 years undergoing routine cardiac surgery, 256 electrode epicardial mapping was performed. Activation-recovery intervals (ARI; a surrogate for APD) were recorded over the entire ventricular surface. Mono-exponential restitution curves were constructed for each electrode site using a standard S1-S2 pacing protocol. The median maximum restitution slope was 0.91, with 27% of all electrode sites with slopes<0.5, 29% between 0.5 and 1.0, and 20% between 1.0 and 1.5. Eleven per cent of restitution curves maintained slope>1 over a range of diastolic intervals of at least 30 ms; and 0.3% for at least 50 ms. Activation-recovery interval restitution was spatially heterogeneous, showing regional organization with multiple discrete areas of steep and shallow slope. We used a simplified computer model of 2-D cardiac tissue to investigate how heterogeneous APD restitution can influence vulnerability to, and stability of re-entry. Our model showed that heterogeneity of restitution can act as a potent arrhythmogenic substrate, as well as influencing the stability of re-entrant arrhythmias. Global epicardial mapping in humans showed that APD restitution slopes were organized into regions of shallow and steep slopes. This heterogeneous organization of restitution may provide a substrate for arrhythmia.

Original publication

DOI

10.1113/expphysiol.2005.031070

Type

Journal article

Journal

Exp Physiol

Publication Date

03/2006

Volume

91

Pages

339 - 354

Keywords

Action Potentials, Aged, Aged, 80 and over, Aortic Valve Insufficiency, Arrhythmias, Cardiac, Body Surface Potential Mapping, Computer Simulation, Coronary Disease, Female, Heart, Heart Conduction System, Heart Diseases, Heart Ventricles, Humans, Male, Middle Aged, Models, Cardiovascular