Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

The survival motor neuron (SMN) protein, the determining factor for spinal muscular atrophy (SMA), is complexed with a group of proteins in human cells. Gemin3 is the only RNA helicase in the SMN complex. Here, we report the identification of Drosophila melanogaster Gemin3 and investigate its function in vivo. Like in vertebrates, Gemin3 physically interacts with SMN in Drosophila. Loss of function of gemin3 results in lethality at larval and/or prepupal stages. Before they die, gemin3 mutant larvae exhibit declined mobility and expanded neuromuscular junctions. Expression of a dominant-negative transgene and knockdown of Gemin3 in mesoderm cause lethality. A less severe Gemin3 disruption in developing muscles leads to flightless adults and flight muscle degeneration. Our findings suggest that Drosophila Gemin3 is required for larval development and motor function.

Original publication

DOI

10.1371/journal.pgen.1000265

Type

Journal article

Journal

PLoS Genet

Publication Date

11/2008

Volume

4

Keywords

Animals, DEAD Box Protein 20, DEAD-box RNA Helicases, Drosophila Proteins, Drosophila melanogaster, Humans, Larva, Mice, Motor Neurons, Mutation, Survival of Motor Neuron 1 Protein, Transgenes