Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

In the heart, intracellular Na(+) concentration (Na(+) (i)) is a controller of intracellular Ca(2+) signaling, and hence of key aspects of cell contractility and rhythm. Na(+) (i) will be influenced by variation in Na(+) influx. In the present work, we consider one source of Na(+) influx, sarcolemmal acid extrusion. Acid extrusion is accomplished by sarcolemmal H(+) and HCO(3) (-) transporters that import Na(+) ions while exporting H(+) or importing HCO(3) (-). The capacity of this system to import Na(+) is enormous, up to four times the maximum capacity of the Na(+)-K(+) ATPase to extrude Na(+) ions from the cell. In this review we consider the role of Na(+)-H(+) exchange (NHE) and Na(+)-HCO(3) (-)co-transport (NBC) in mediating Na(+) influx into cardiac myocytes. We consider, in particular, the role of NBC, as so little is known about Na(+) influx through this transporter. We show that both proteins mediate significant Na(+) influx and that although, in the ventricular myocyte, NBC-mediated Na(+) influx is less than through NHE, the proportions may be altered under a variety of conditions, including exposure to catecholamines, membrane depolarization, and interference with activity of the enzyme, carbonic anhydrase.

Original publication




Journal article


J Cardiovasc Electrophysiol

Publication Date



17 Suppl 1


S134 - S140


Adenosine Triphosphate, Animals, Biological Transport, Active, Cell Membrane, Homeostasis, Humans, Hydrogen-Ion Concentration, Ion Channel Gating, Membrane Potentials, Myocytes, Cardiac, Signal Transduction, Sodium, Sodium-Bicarbonate Symporters, Sodium-Hydrogen Antiporter, Ventricular Function