Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we will assume that you are happy to receive all cookies and you will not see this message again. Click 'Find out more' for information on how to change your cookie settings.

Dr Damien Barnette, one of the Postdoctoral Research Scientists here in the department has recently published new data in the journal JCI Insight, iRhom2-mediated proinflammatory signalling regulates heart repair following myocardial infarction.

When the heart undergoes injury, such as following a heart attackan immediate response is the infiltration of immune cells of which one important sub-type are macrophages. These are thought to come in two distinct “flavours”- early “proinflammmatory” (or M1), which mop up dead and dying cells, followed by “reparative” (M2) macrophages, which help remodel the heart and contribute to patching the area of injury with a scar.

By looking at the injured hearts in mice that lack secretion of a key inflammatory molecule called TNF-alpha from their macrophages, Dr Barnette and colleagues revealed an unexpected link between the two immune cell phases in response to injury.

The dampening of pro-inflammatory signalling had a direct, knock-on effect on scar formation, whereby the mutant mice had less stable scars, poor heart function and reduced survival.

This suggests that there is a gradient of immune cell responses which is not restricted to the two “flavours”, and that downstream repair of a heart attack by scar formation is inextricably linked to the early pro-inflammatory immune cell response. This has important implications for designing strategies to modulate inflammation and repair as a combined therapy with restoring lost cardiovascular tissue after heart attack.

This work was done in collaboration with Professor Paul RileyDr Thomas CahillMs Mala Gunadasa-Rohling, Professor Carolyn Carr, Professor Matthew Freeman (Dunn School) and was supported by the British Heart Foundation

To find out more about the research that goes on at DPAG similar to this, visit the Riley Research Group webpage.

Similar stories

New research to radically alter our understanding of synaptic development

Publication Research

A new study from the Molnár group on the role of regulated synaptic vesicular release in specialised synapse formation has made it to the cover of Cerebral Cortex.

Being "in the zone": how waking activity controls sleep need

Publication Research Vyazovskiy Group News

A new study from the Vyazovskiy group suggests that how and where we spend our time while awake impacts how much we need to sleep - it does not only depend on how long we are awake.

New target identified to develop treatment for Abdominal Aortic Aneurysm

Cardiac Theme Publication Research

A new study from the Smart group has shed light on a key regulatory step in the initiation and progression of Abdominal Aortic Aneurysm by revealing the protective role of a previously little known small protein.

New research grant to Pawel Swietach to further understanding of propionic acidemia

Awards and Honours Cardiac Theme

A new collaborative project led by the Swietach group funded by the Propionic Acidemia Foundation will investigate the disease mechanisms and risk factors for cardiac disease caused by a severe inherited disorder.

Researcher publishes children's book of the brain

Postdoctoral Publication

Betina Ip, a Royal Society Dorothy Hodgkin Research Fellow based in NDCN, formerly a postdoctoral research scientist in DPAG, has written a book for children: The Usborne Book of the Brain and How it Works.