Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dr Kerry Walker and her team help us to better understand how we perceive pitch, a feature of hearing critical to recognising communication through sound, such as speech and music.

“Pitch” refers to our experience of the tonal quality of sound on a low-to-high musical scale, and it is one of the most behaviourally important features of hearing.

Animal models allow us to better understand the brain mechanisms responsible for experiencing a perception of pitch, but we currently have a poor understanding of the extent to which these mechanisms are conserved across species.

In a new study published in eLife, Dr Walker and her team have uncovered key differences in the way that pitch is extracted from sound waves in humans and non-human animals. Using behavioural tasks, their research shows that ferrets primarily derive pitch from the temporal properties of sounds, while human listeners depend more on the sound’s frequency content. They also apply computational models to explain how these species differences can result from mechanisms in the inner ear.

The full study, "Across-species differences in pitch perception are consistent with differences in cochlear filtering," is available to read here.

Similar stories

Can humans hibernate?

Illuminating new TEDx Talk from Professor of Sleep Physiology Vladyslav Vyazovskiy

New insights into chemogenetic designer drugs to enhance our study of behaviour

A collaborative team of researchers in DPAG and Pharmacology led by Dr Lukas Krone have uncovered striking new data demonstrating that two widely used designer drugs used to turn populations of neurons on and off in the brain cause unexpected effects on sleep. These results demonstrate a critical need to improve chemogenetic approaches in behavioural studies.

Unlocking the Secrets of cAMP Signalling in the Heart: A Pathway to Targeted Therapeutics

A new Zaccolo group study has revealed key new insights into the role of cAMP signalling in both healthy and disease settings within the heart. They have identified new cAMP nanodomains in cardiac muscle cells that have far reaching implications for the treatment of heart disease.

Key exosome subtype in cancer progression identified

Collaborative work from DPAG and Oncology researchers has revealed a potential new pathway to block the production of a specific group of exosomes made in the cell’s recycling system that can promote the growth of cancerous tumours.

Armin Lak appointed Associate Professor of Integrative Neuroscience

The post is in association with a Tutorial Fellowship at St John's College.