Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Pictured is the first comparative transcriptome analysis of the brain between amniote species (colored networks) addressing the thorniest problem in comparative neurobiology: understanding the evolution of the mammalian neocortex from its progenitor in our common ancestor with sauropsids (birds and reptiles). The branches represent the radiation of different amniotic lineages. In the background is sequence from Rorb, one member of a gene expression signature detected in functionally analogous circuits (see the article by T. G. Belgard, J. F. Montiel et al. in PNAS 2013 Jul 22). Image created by J. F. Montiel.
Pictured is the first comparative transcriptome analysis of the brain between amniote species (colored networks) addressing the thorniest problem in comparative neurobiology: understanding the evolution of the mammalian neocortex from its progenitor in our common ancestor with sauropsids (birds and reptiles). The branches represent the radiation of different amniotic lineages. In the background is sequence from Rorb, one member of a gene expression signature detected in functionally analogous circuits (see the article by T. G. Belgard, J. F. Montiel et al. in PNAS 2013 Jul 22). Image created by J. F. Montiel.